Integral variational PRinciple of mechanics

(INTEGRAL'NYI VARIATSIONNYI PRINTSIP MEKHANIKI)

PMM Vol. 30, No. 5, 1966 pp. 946.949

L. Ia. AINOLA
(Tallin)

(Received April 3, 1966)

Many works have been devoted to the variational principles of mechanics; of these we mention only the monographs [1 to 4].

The well known integral variational formulations of problems of mechanics assume that the position of the mechanical system is specified at the end of the time interval under consideration. However, the final position is usually not known, while the initial position and velocity, are. Variational formulations of this problem with given initial conditions are presented here for linear systems with equations having constant coefficients.

1. The first form of the variational principle. Let us consider a system of particles which has n degrees of freedom. We shall denote the generalized coordinates by q_{1}, q_{2}, \ldots, q_{n}. It will be assumed that the kinetic energy T and the potential energy of the system proper U are representable as positive definite quadratic forms with constant coefficients in the generalized velocities and the generalized coordinates, respectively

$$
\begin{equation*}
T=\frac{1}{2} \sum_{i, k=1}^{n} a_{i k} q_{i} q_{k}, \quad U=\frac{1}{2} \sum_{i, k=1}^{n} c_{i k} q_{i} q_{k} \tag{1.1}
\end{equation*}
$$

The external forces f_{1}, \ldots, f_{n} act on the system. The potential of these forces is

$$
\begin{equation*}
V=-\sum_{i=1}^{n} f_{i} q_{i} \tag{1.2}
\end{equation*}
$$

The Lagrangian then has the form

$$
\begin{equation*}
L=\frac{1}{2} \sum_{i, k=1}^{n} a_{i k} q_{i}{ }^{\circ} q_{k} \cdot \frac{1}{2} \sum_{i, k=1}^{n} c_{i k} q_{i} q_{k}+\sum_{i=1}^{n} f_{i} q_{i} \tag{1.3}
\end{equation*}
$$

If the positions of the system at the times $t=0$ and $t=\tau$ are known, then, according to Hamilton's principle, the system moves between these positions in such a way that

$$
\begin{equation*}
\delta \int_{0}^{\tau} L\left(q, \dot{q}^{*}, t\right) d t=0 \tag{1.4}
\end{equation*}
$$

For given positions at the times $t=0$ and $t=\tau$, it follows from the condition (1.4) that the equations of motion of the system are

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L}{\partial q_{i}}-\frac{\partial L}{\partial q_{i}}=0 \quad \text { or } \quad \sum_{k=1}^{n}\left(a_{i k} q_{l i} \cdot c_{i k} q_{k}\right)=l_{i} \quad(i=1,2, \ldots, n) \tag{1.5}
\end{equation*}
$$

Let us now turn to the case in which the position and velocity of the system are specified at the initial time $t=0$. Without loss of generality we may take

$$
\begin{equation*}
q_{i}(0)=0, \quad q_{i}^{*}(0)=0 \tag{1.6}
\end{equation*}
$$

Taking into account the form of the Lagrangian (1.3), we shall examine the functional

$$
\begin{gather*}
A=\int_{0}^{\tau} K^{*}\left(q, q^{*}, q^{*}, q^{*}, t\right) d t \\
K^{*}=\sum_{i, k=1}^{n} a_{i k} q_{i} \dot{q}_{k}^{*}-\sum_{i, k=1}^{n} c_{i k} q_{i} q_{k}^{*}+\sum_{i=1}^{n} f_{i}^{*} q_{i}+\sum_{i=1}^{n} f_{i} q_{i}{ }^{*} \tag{1.7}
\end{gather*}
$$

We assume here that the functions q_{i} and q_{i}^{*} are matually independent functional arguments and that the $f_{i}{ }^{*}$ as well as the f_{i} are given functions. The particular form of the functions $f_{i}{ }^{*}$ will be determined later.

We consider the first variation of the functional (1.7)

$$
\begin{gather*}
\delta A=\int_{0}^{\tau} \sum_{i=1}^{n}\left\{\left(\frac{\partial K^{*}}{\partial q_{i}^{*}}-\frac{d}{d t} \frac{\partial K^{*}}{\partial q_{i}^{* *}}\right) \delta q_{i}^{*}+\left(\frac{\partial K^{*}}{\partial q_{i}}-\frac{d}{d t} \frac{\partial K^{*}}{\partial q_{i}^{*}}\right) \delta q_{i}\right\} d t+ \tag{1.8}\\
+\left.\sum_{i=1}^{n}\left(\frac{\partial K^{*}}{\partial q_{i}^{*}} \delta q_{i}^{*}+\frac{\partial K^{*}}{\partial q_{i}^{*}} \delta q_{i}\right)\right|_{t=0} ^{t=\tau}
\end{gather*}
$$

The following notation is introduced:

$$
L^{*}=\frac{1}{2} \sum_{i, k=1}^{n} a_{i k} q_{i}^{* *} q_{k}^{*}-\frac{1}{2} \sum_{i, k=1}^{n} c_{i k} q_{i}^{*} q_{k}^{*}+\sum_{i=1}^{n} f_{i}^{*} q_{i}^{*}
$$

Then

$$
\begin{equation*}
\frac{\partial K^{*}}{\partial q_{i}{ }^{*}}=\frac{\partial L}{\partial q_{i}{ }^{*}}, \quad \frac{\partial K^{*}}{\partial q_{i}{ }^{*}}=\frac{\partial L^{*}}{\partial q_{i}^{*}}, \quad \frac{\partial K^{*}}{\partial q_{i}^{*}}=\frac{\partial L}{\partial q_{i}}, \quad \frac{\partial K^{*}}{\partial q_{i}}=\frac{\partial L^{*}}{\partial q_{i}^{*}} \tag{1.9}
\end{equation*}
$$

or

$$
\frac{\partial K^{*}}{\partial q_{i}^{*}}=\sum_{k=1}^{n} a_{i k} q_{k}^{\cdot} \quad \frac{\partial K^{*}}{\partial q_{i}^{*}}=\sum_{k=1}^{n} a_{i k} q_{k}^{* *}
$$

After making use of Equations (1.9), the variation (1.8) can be represented in the form

$$
\begin{align*}
& \delta A=\int_{0}^{\tau} \sum_{i=1}^{n}\left\{\left(\frac{\partial L}{\partial q_{i}}-\frac{d}{d t} \frac{\partial L}{\partial q_{i}^{*}}\right) \delta q_{i}^{*}+\left(\frac{\partial L^{*}}{\partial q_{i}^{*}}-\frac{d}{d t} \frac{\partial L^{*}}{\partial q_{i}^{*}}\right) \delta q_{i}\right\} d t+ \\
& +\sum_{i, k=1}^{n} a_{i k}\left[q_{i}^{*}(\tau) \delta q_{k}^{*}(\tau)+q_{i}^{*}(\tau) \delta q_{k}(\tau)-q_{i}^{*}(0) \delta q_{k}^{*}(0)-q_{i}^{*}(0) \delta q_{k}(0)\right] \tag{1.10}
\end{align*}
$$

It follows from Equation (1.10) that $\delta A=0$ if the functions q_{i} satisfy the equations (1.5) and the initial conditions (1.6) and the functions q_{i}^{*} satisfy the equations

$$
\begin{equation*}
\frac{d}{d t} \frac{\partial L^{*}}{\partial q_{i}{ }^{*}}-\frac{\partial L^{*}}{\partial q_{i}{ }^{*}}=0 \quad \text { or } \quad \sum_{k=1}^{n}\left(a_{i k} q_{k}^{\cdot \cdot *}+c_{i k} q_{k}^{*}\right)=f_{i}^{*} \tag{1.11}
\end{equation*}
$$

and the conditions

$$
\begin{equation*}
q_{i}^{*}(\tau)=0, \quad q_{i}^{*}(\tau)=0 \tag{1.12}
\end{equation*}
$$

We now transform the auxiliary problem (1.11) and (1.12) to the form of the problem under study (1.5) and (1.6). We introduce the new variable

$$
\begin{equation*}
\eta=\tau-t \tag{1.13}
\end{equation*}
$$

and define

$$
\begin{gather*}
r_{i}(\eta)=q_{i}^{*}(\tau-\eta), \quad g_{i}(\eta)=f_{i}^{*}(\tau-\eta) \\
\mathbf{\Lambda}\left(r_{i} r^{\prime}, \eta\right)=L^{*}\left[q^{*}(\tau-\eta), \quad q^{*}(\tau-\eta), \tau-\eta\right] \tag{1.14}
\end{gather*}
$$

We remark that

$$
\begin{equation*}
r_{i}^{\prime}=\frac{d r_{i}}{d \eta}=-q_{i}^{\prime *}(\tau-\eta) \tag{1.15}
\end{equation*}
$$

According to the relation (1.9), we have

$$
\begin{equation*}
\Delta\left(r, r^{\prime}, \eta\right)=\frac{1}{2} \sum_{i, k=1}^{n} a_{i k} r_{i}^{\prime} r_{k}^{\prime}-\frac{1}{2} \sum_{i, k=1}^{n} c_{i k} r_{i} r_{k}+\sum_{i=1}^{n} g_{i} r_{i} \tag{1.16}
\end{equation*}
$$

Equations (1.11) and the conditions (1.12) now take the form

$$
\begin{align*}
& \frac{d}{\partial \eta} \frac{\partial \Lambda}{\partial r_{i}^{\prime}}-\frac{\partial \Lambda}{\partial r_{i}}=0 \quad \text { or } \quad \sum_{k=1}^{n}\left(a_{i k_{k}} r_{k}^{\prime \prime}+c_{i k} r_{k}\right)=g_{i} \tag{1.17}\\
& r_{i}(0)=0, r_{i}^{\prime}(0)=0 \tag{1.18}
\end{align*}
$$

in the new notation.
The equations (1.17) and the conditions (1.18) which have been obtained differ from (1.5) and the conditions (1.6) only as regards the notation for the variables. If we now denote

$$
\begin{equation*}
\eta=t, \quad r_{i}=q_{i}, \quad g_{i}=f_{i} \tag{1.19}
\end{equation*}
$$

the equations of the auxiliary problem (1.17) with the initial conditions (1.18) coincide completely with the equations of the problem under study (1.5) and initial conditions (1.6).

The relations (1.14) and (1.19) permit us to express $q_{i}{ }^{*}$ and f_{i}^{*} in terms of the functions q_{i} and f_{i}

$$
\begin{equation*}
q_{i}^{*}(\tau-t)=q_{i}(t), \quad f_{i}^{*}(\tau-t)=f_{i}(t) \tag{1.20}
\end{equation*}
$$

It is easy to verify that the equations

$$
\begin{equation*}
q_{i}^{*}(t)=q_{i}(\tau-t), \quad f_{i}^{*}(t)=f_{i}(\tau-t) \tag{1.21}
\end{equation*}
$$

follow from (1.20).
Substituting the obtained functions q_{i}^{*} and f_{i}^{*} into the functional (1.7), we obtain the following variational principle of mechanics. For giver initial" position and velocity, the true motion of the system in the time interval $(0, T)$ is such that the integral

$$
\begin{equation*}
A=\int_{0}^{\tau} K\left[q(t), q(\tau-t), q^{\prime}(t), q^{*}(\tau-t), t\right] d t \tag{1.22}
\end{equation*}
$$

is stationary. Here the function K has the form

$$
\begin{equation*}
K=-\sum_{i, k-1}^{n} a_{i k} q_{i}^{*}(t) q_{k}^{\cdot}(\tau-t)-\sum_{i, k=1}^{n} c_{i k} q_{i}(t) q_{k}(\tau-t)+2 \sum_{i=1}^{n} f_{i}(t) q_{i}(\tau-t) \tag{1.23}
\end{equation*}
$$

2. The second form of the variational principle. We shall formulate a variational principle of mechanics for the case in which the motion of the system is described with the aid of generalized coordinates and momenta. The problem under consideration is defined by Hamilton's equations

$$
\begin{gather*}
q_{i}^{*}=\frac{\partial H}{\partial p_{i}}, \quad p_{i}^{\prime}=-\frac{\partial H}{\partial q_{i}} \tag{2.1}\\
I I(q, p, t)=\frac{1}{2} \sum_{i, k=1}^{n} a_{i k}^{(-1)} p_{i} p_{k} \div \frac{1}{2} \sum_{i, k=1}^{n} c_{i k} q_{i} q_{k}-\sum_{i=1}^{n} f_{i} q_{i} \tag{2.2}
\end{gather*}
$$

with the initial conditions

$$
\begin{equation*}
q_{i}(0)=0, \quad p_{i}(0)=0 \tag{2.3}
\end{equation*}
$$

The validity of the following variational principle can be proved for the present problem. For given initial positions and momenta the true motion of the system in the time internal $(0, \tau)$ is such that the integral

$$
\begin{equation*}
J=\int_{0}^{\tau}\left\{\sum_{i=1}^{n} p_{i}(\tau-t) q_{i}(t)+G[q(t), q(\tau-t), p(t), p(\tau-t), t]\right\} d t \tag{2.4}
\end{equation*}
$$

is stationary. Here the function G has the form

$$
\begin{equation*}
G=-\frac{1}{2} \sum_{i, k=1}^{n} a_{i \hbar}^{(-1)} p_{i}(t) p_{k}(\tau-t)+\frac{1}{2} \sum_{i, k=1}^{n} c_{i k} q_{i}(1) q_{k}(\tau-t)-\sum_{i=1}^{n} j_{i}(\tau-t) q_{i}(t) \tag{2.5}
\end{equation*}
$$

To prove this principle we take the first variation of the functional (2.4)

$$
\begin{gather*}
\delta J=-\int_{0}^{\tau}\left\{\sum_{i=1}^{n}\left[p_{i}^{*}(\tau-t)-\frac{\partial G}{\partial q_{i}}\right] \delta q_{i}(t)+\right. \\
\left.\left.+\sum_{i=1}^{n}\left[q_{i}^{*}(\tau-t)-\frac{\partial G}{\partial p_{i}}\right] \delta r_{i}(t)\right\} d t-\left.\sum_{i=1}^{n} r_{i}(\tau-t) \delta q_{i}(t)\right|_{t=0} ^{t=\tau}\right\} \tag{2.6}
\end{gather*}
$$

Taling account of the equation

$$
\begin{equation*}
\int_{0}^{\tau} u(t) v(\tau-t) \pi t=\int_{0}^{\tau} u(\tau-t) v(t) d t \tag{2,7}
\end{equation*}
$$

we obtain from (2.2) and (2.5)

$$
\frac{\partial G}{\partial q_{i}}=\frac{\partial H[q(\tau-t), p(\tau-t), \tau-t]}{\partial q_{i}(\tau-t)}, \quad \frac{\partial G}{\partial p_{i}}-\frac{\partial I I[q(\tau-t), p(\tau-t), \tau-t]}{\partial p_{i}(\tau-t)}
$$

By virtue of the relations (2.8), the variation (2.6) is equal to zero if the conditions (2.3) and the equations

$$
\begin{align*}
& q_{i}^{\cdot}(\tau-t)+\frac{\partial I I[q(\tau-t), p(\tau-t), \tau-t]}{\partial p_{i}(\tau-t)}=0 \\
& p_{i} \cdot(\tau-t)-\frac{\partial I I[q(\tau-t), p(\tau-t), \tau-t]}{\partial q_{i}(\tau-t)}=0 \tag{2.9}
\end{align*}
$$

are satisfied. Since these equations differ from the Hamilton's equations (2.1) only as regards the notation of the independent variable, the variational principle is proved.

BIBLIOGRAPHY

1. Polak, L.S., Variatsionnye printsipy mekhaniki, ikh razvitie i primenenie v fizike (The Variational Principles of Mechanics, Their Development and Application to Physics), Moscow, Fizmatgiz, 1960.
2. Variatsionnye printsipy mekhaniki. Sb. statei pod red. L.S. Polaka (The Variational Principles of Mechanics, Collection of papers edited by L.S. Polak), Moscow, Fizmatgiz, 1959.
3. Lanczos, C., Variatsionnye printsipy mekhaniki (The Variational Principles of Mechanics) (Russian translation), Moscow, 'Mı', 1965.
4. Yourgrau, M. and Mandelstam, S., Variational Principles in Dynamics and Quantum Theory, London, 1960.
